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LOWER BOUNDS ON BEARK;G ACCURACY
FOR CLOSELY SPACED SOURCES

Abstract

Resolution of multiple sources that are closely spaced in
bearing is a topic of ccnsiderable interest in passive localization app-
lications. Many of the avaiia !e studies have been devoted to the i .
.plementation of algrih s with less emphas;.s on the absolute lowe
bounds on attainable accuracy. "This report presents Cramer-Rao lower
bounds on bearing eszmat:ion error for two closely spaced incoherent
sources which radiate spectrally overlapping broadband Gaussian noise.
The radiated signals are assumed to occupy the same frequency band which
is taken Be to be lcwpass and reczangular in shape. The signals have
(possibly differen-n) unknown spectrum levels. In the most general prob-
lem setting, e.g./ when prior knowledge of signal levels or a singe
source bearing is unavailable, estimation accuracy is shown to degrade in
proportion to the second power of the inverse angular spacing, resulting
in large degradaticns when compared to the accuracy attainable in a sin-
gle source setting. There Is evidence that in certain situations, a form
of apriori knowledge concernin g signal power levels can be used to signi-
ficant advantage in joint bearing estimation.

The detectability of a second source from a signal field on
taining two closely spaced sources that mrre overlapping'/in both time and
frequency depends on the resolving power of the array and is expected to
be poor at low signal-to-noise ratios and short observation times when
the angular spacing is small. The problem is addressed by considering
the following, binary hypothesis test

H0 : There are two closely spaced sources present, which radiate
power SNR1 and SNR2 , respectively;

HI: There is one source present radiating the total received po-
wer SNR1 + SNR 2.
where upper bounds on the false alarm and miss probabilities are comput-
ed. The results indicate that below a well defined threshold, defined by
a combination of the two signal-to-noise ratios, observation time and
angular spacing, the probability of error in guessing the wrong hypothes-
is tends to one half. The reachability of the earlier computed Cra=er-

Rao lower bounds for this regime is questionable.'
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Introduction

Join: bearing estimation of multiple radiating sources is a
problem which has generated considerable interest in the signal
processing comunity in recent years. A large majority of the studies
have been concerned with the implementation of so-called high resolution
algorithms, which have been known to be successful in resolving multiple
closely spaced sources [1]-[5]. There have been fewer general studies
concerned with absolute lower bounds on accuracy. Without relevant
performance figures to serve as benchmarks against which the accuracy of
practical a go.ts may be compared, the degree of optimality for
different approaches is difficult to assess. In addition, most of the
studies (both analytical and algorithm-based) have treated the narrowband
problem exclusively [3] -[5].

Lower bounds on bearing error in a multiple source setting have
been computed by other authors and most notable of these are references
[6J - [10]. Reference [5] considers Cramer-Rao lower bounds on bearing
error as well as the structure of maximun' likelihood bearing estimators
for in the cases of both closely spaced and well separated sources. When
the bearing difference is smaller than a beamwidth over the entire
(overlapping) frequency band, bearing accuracy associated with a given
source is shown to degrade seriously as result of the presence of an
interfering signal at unknown bearing. The author demonstrates that the

result holds for both broadband and narrowband signals. The analysis
yields considerable insigh t in-to the structure of the likelihood function
as well as th- lower bounds under the two extreme differential bearing
stuatihns, but it employs the assumption of known spectral properz:es
for the sources. Since the high resolution methods do not require prior
knowledge of spectral properties to determine bearing, and because
generally the spectral properties are unknown apriori, a reliable basis
for comparison of the lower bounds with practical estimation performance
would seem to require extension of the unknown parameter set in lower
bound computations to include spectral parameters.

Reference [7] presents analytical forms for the complete Fisher
matrix corresponding to estimation of both bearing and power levels for
two incoherent narrowband sources. The authors point out that for
bearing differences which exceed a beamwidth, the impact of uncertainty
in power levels on bearing accuracy could be minimized with the use of
arrays which exhibit smooth beampattern values in the neighborhood of an
interference. The discussion was confined to source separations that
exceed a beamwidth, leaving open the question of estimation accuracy
de;radations for sources in a closely spaced configuration.

Ng in reference [8] computes analytical forms of the Fisher In-
formation matrix for a two receiver array, leaving open the question of

* performance for larger arrays, as well as the performance degradations
resulting from unknown signal levels. Boehme in reference [9)
demonstrates with extensive simulation results the statistical coupling
of bearing, range and signal level estimates in a multiple source
setting. His study considered both well separated and closely spaced
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sources but presented no performance figures.
This study considers the bearing estimation accuracy of tw(

closely spaced sources under conditions in which prior knowledge of th4
radiazed signal powers is not necessarily available. The source signali
are modelled as spectrally and temporally overlapping. The studl
Investigates the performance of line arrays of equally spaced sensori
under ccnditions of practical interest. The power ratio of the tw
source is demonstrated to play a major role in determining accuracy. Thl
discussion is largely focussed on the situation in which the angulal
difference between the sources is extremely small.

- At low signal tb noise ratios and short observation times, th4
ability c_ the array to distinguish the two sources from a single sourc4
is expected to deteriorate, and this suggests that without apriorl
knowledge of the number of sources present, the Cramer-Rao lower boundi
are simply unreachable. The final portion of the study addresses thI
resolvability of the two sources when the angular difference becomel
small.

The e report is organized as follows. In section 1, the genera
theory is =resented which includes analytical forms of the lower bound
on source bearings. Section 2 discusses features of the bounds when th
signal levels are known aoPriori. The relative signal to noise ratios o
the individual sources is s.cwn to play an important role i. dezerminin
cverall accuracy. Unknown signal power levels are introduced in sectio
3 where accuracy reduczicns in the performance computed in section 2 ar
shown to be quite large. Section 4 considers the resolvability of th
sources. A summary of the importanz results is given in secticn 5.

1. General Theory

An equally spaced line array is located in the far field rela
tive to a pair of incoherent radiating sources (Figure 1). The source
are oriented at bearings al (source 1) and a2 (source 2) with respect t
the array axis. The signal received by any given sensor in the array i
equal to the sum of the two source signals in addition to a noise signa
that is assumed to be locally generated or produced by the receiver it
self

0 :5 t 5 T

xi'-) = sl(t-ti) + s2(t-Zi) + n(t) ; (1)

h~rk it is assumed that the signals sl(t) and s 2 (t) are mutually incoheren
but individually (perfectly) coherent over the receiving array, while th
noise signals are statistically independent from sensor to sensor. Th
variable ti denotes the propagation delay for source signal 1 to trave
to sensor i. Similarly zi refers to the delay associated with sourc
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Figure 1

The sensor spacing, d, is uniform over the array. Since there are a
total of M receivers in the array, the array has length (M-l)d T L. The
angular difference between the sources measured with respect to he array
a:-:S a4-t th e -ni.dpoin t i s A a.

Based on signal observations from the sensors, we wish t". find
the lower bound on estinmates of a1 and a2. If the spectral proper:ies of
the signal and noise processes are known apriori the parameters of
interest include only bearings and the relevant parameter vector q is
given by

The inverse of the well known Fisher Information matrix [II] yields the
error variances of estimates for parameters in e
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= ~. a 1 p (X/8) 8 in p(/3 (2)ae aei j ¢2

Co" ij (3)

If the spectral parameters are unknown, e will be suitably enlarged. In
the first part of this discussion, the effects of uncertain spectral
parameters will be ignored.

The following assu r.pticns are used in the analysis

1. The signals sl(t) and s2 (t) are sample functions from
a-atistically independent stationary Gaussian processes with zero means.

L. processes have lowpass, rectangular spectra of equal width, W, but
with possibly different heights.

2. The noise signals appearing a: the various racefvers
are sample functions from statistically independent, stationary
Gaussian processes with zero means and identi:za spectral proper:des.

3. The observation time, T, is much longer than the (com-
mon) signal correlation time.

ficients cf the signals received by the varicus sensors concatenated:

= [X( )T, X( 2 )T, ., X()1 )T ]T

where

X(c.k) = [ X1 (k),X2(Ok) .. . XM (wk) ]T

Xi (k) xi (t) e-JJtdt

The probability density function of the data vector, X, condit-
ioned on 9, is complex and Gaussian with zero mean. If the time-
bandwidth product TW is much larger than one, the data Fourier co-
efficients associated with different frequencies are approximately un-
correlated. Under these cond-itions, the pdf of the data vector X has
the form:

TW
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p(x/_) = ( de - - exp ( -XC KX(4)
k =1

XL. is the covariance matrix of the sensor data at frequency k- De:ine
the signal steering vectors y and v- as follows

v, = [ e - j wkt l  ejkt 3T

y2 = C e - j k z l , . , e-JkzM T (

Kk then has the form

= Sl(wk)VV" + S2(wk)V2V 2  + N(wk)i (7)

where T is the identity matrix. S1(wk), S2(0k) and !1('k) are the power
spectra of sl(t) , s 2 (t) and ni(t) , respectively.

The elements of J can be obtained fr.m equation (2), using the
following well known results (11)

TW

jij Tr( Kk- l K Kk' )- (8)aei  aej
k= 1

TW
=Tr a (Kk  (9)

k =1

Kk can be inverted with the use of Bartlett's Identity:

/



Kk - - Gk  P1 _vV + ?2 Zf1 - P I?Kk= Nk .k

7-1i'vv~ + -I1mi 10

The k - subscripts have been omitted in the quan:ities P1 and P2 in (10)
to simplify subsequent algebraic expressions :

P! S! /I)/N(W) S ( S2(k)/'N4) (11)

1 + MSI(w k ) 1 + MS2(J k )

1

Gk 1 - 2 IZI'£2V (12a)

.2~~~ -____ ____ ___ ____ ___

M

'Z2 = cos k (t4 - tj - z; + z-) (12b)

i'3 I 
2

Note the dependence of the function IYZ12 on the angular frequency w
and the differential bearing and range between sources which is expressed
by the quantity

(ti - tj - zi + zj)

Calculations carried out in Appendix 1 yield the following exp-
ressicns for elements of the Fisher Information matrix

j Gk PI SI (wk) /Nb(k) 31~ - P2 91 }+ P 2 P2 2Gkql 2 }(13)
1= f I }f14{ 1

k 1

~TW

J22 IGk P2 S2(wk)/N(wk) { 32 - Pl2 } p12P22Gkq2 (15)

kc = 1

The variables ql.42.21.Z2.31.32 are defined as follows :

;, ia _2 1,2 (16)

S. . . . . .. .



.2 ;i 1,2 (17)

i 2 T r r. )( -- . - ) 1 , J = .,2

3i is reccgnized as the familiar pattern function derivative.
From an analytical point of view, Zi is the only geometric-al quantity
that is important in determining the accuracy of a location parameter for
a single source. One can show this by setting S2(wk) equal to zero over
the frequency band in (13). It then follows that Gk ( 1 +
MS1(wk)/N(wk) )-1 and one obtains for Y1

-f 1

_ r (Si(k)/N()) 2
I Var(+) M Si (1 ((9a)

k= 1

It can be shown ( see Appendix 2) that when the sensors are arranged in a
line array configuration of total length L, (19a) is equivalent to:

WT N 2 2 -l-a ": f + w~(k) / (w ) (k (19b)
I / 1+ MS'i(k ,I&k = 1I'

where Nk is the signal wavelength at frequency k. The above expression
for the variance of bearing error-indicates that the important geomet-
rical quantity determining accuracy is the ratio Lsin(al)/Xk. Lsin(a I )
is the array baseline ( length of the array component in the direction
orthogonal to the line of sight to the source ). Accurate bearing esti-
mates will therefore result when the baseline exceeds a signal period.
Sinci the Cramer-Rao lower bound is a local error bound, it will not
yield information about estimation accuracies resulting from ambiguous
estimates ( noise generated peaks in the likelihood function which occur
far away from the true parameter value, or-multiple -solutions to the
likelihood equation resulting from ambiguous delay estimates for* narrow-
band signals ). If the possibility of ambiguity error can be safely dis-
counted, then equation (19b) states that reductions in the Lsin(al/Ak)
ratio must be offset by simultaneous increases in the signal to noise
ratio or observation time, if operation within reasonable accuracy limits
is to be acheived. The remainder of this report will be confined to a
discussion of local errors only.

Returning now to equations (13) -(18), it is clear that the remaining
quantities appearing in the Fisher matrix describe the interactions of
the two sources resulting from effects of interference. Of prominence

Nq



are derova:ives of tne array beampat:ern,

2

The beampattern is defined in equation (12b) and will be shcwn to depend
on te s g-a frequency, the array configuration a:. the angles of
orientation of the two sources. The array beampattern is the measured
response at a particular frequency for an array which has been focussed
Cn source 1 but which receives signal energy from the direction o an
interarence (source 2) At frequencies for which the beampatzern is
large, he sources a=ear to radiate from nearly the same bearing angle.
At frequencies for which the beampattern is low the sources are easily
distinguishable. Cf particular interesz to us is the case in which the
sources appear to emanate from nearby bearings for all signal frequencies
in the s Lband.

It can be easily shown with a few steps of algebra that if the
array beampatoern hatpened to be equal to zero over the frequency band,
then the beamoat:er-n, its de - iva - vs and the funcZions would be iden--

ticall zero. Ac.ording to (13) - (15), this sizuation would result in a
diagonal Fisher matrix, uncorrelated estimar-in errors for a- and a 2 , and
no degrada:ion in bearing accuracy for either source - not a surprising
result for well-separated sources.

For the case of closely spaced sources, however, by inspecting
equations (13) - (15) , the depe:dence of the lower bound on the two
signal to noise ratios as well as the angular spacing and array
conf:guration is quite complicated. Fcr example, the function Gk varies

twih frequency and the resulting k-sums must be evaluated with care. It
will be convenient to consider bearing accuracy under specific conditions
of interest and for these cases the behavior of the k-sums can be made
simple. The next section considers the problem of closely spaced
sources.

2. Bearing Accuracy for Closely Spaced Sources

Consider now the problem of closely spaced sources, where a. -
d2 is sufficiently small so that

2 2
Y-I1 t2 M . (20)

if the source signals impinge on the array in the form of plane waves,
elements of the Fisher matrix can be simplified considerably. Choosing
the array midpoint as the coordinate system origin, for plane wave
arrivals the travel times are given by

t i = idcosaI/c ; z i = idcosa2 /c ; i = -(M-1)/2,...,(M-I)/2 (21a)

ti. zj. = id(cosai - cosaj)/c (21b)

The beampattern becomes

94Z6.
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M-l
2

v _ co (wL./c)(- j)d(cosai- co - cosa,) ~ (2

= - M-1
2

Suppose l. - a21 << 2:-

t;- zi  ; dAasina; Aa = 1-a2 ; a = (a1+2)/2; (23a)

Under these conditions the cosine argument of the function in (22) will
vary negligibly over the i - index provided AaLsin(a)W/c << 27. In such
a case

2 2
1 - jvixv! / M << 1 (23b)

.ote that the condition (23b) would be satisfied in general when

max l(hkd/c) (i-<) (cos<-cosa2)1 (( 2: v k (24)

In addition to the case al a2, the critericn of equation (24) can also
be met whenever L << hmin- We assume that this is not the case, that is,
we wish to be in an estimation regime in which accurate estimates of ai
or a2 are possible when the measurements are obtained without the pres-
ence of the second signal arrival. When L << hnin the array simply has
no means of determining bearing even for a single source since differen-
tial delays which are fractions of a signal period cannot be exploited in
bearing measurement.

Consider then the lower bound for closely spaced sources, i.e., equat-
ion (24) holds but L > hmin . Computations carried out in Appemdix 2
yield the following approximate expressions for the Fisher matrix ele-
ments. When contributions to the lower bound of order

22

and smaller are neglected one obtains the following

TW )2X12" 2 '2 2]
J1 1  Hk(MS1(wk)/N(-Ok)) 2  1 + P Hk(MS2(k)/N(wk)2  (25)

- k-i

- - - *i* U



TW= k(M 2SI(wk)S2(Jk)/(N(wk)) ) X1X2'-k i- 6/50 2

k =1

k %12kS!(wklS2(wk)/( (wk ) 2 )  (26)

:i TwIT = 2 2 Hk (MS21(k)/(wk))2X2wk2 1 + Ok 2 k(MS(wk)/N(1k ) )21 (27)

k =1

xi 2 (Lsina;/c) 2/6 (23)

A ( AaLsina/c) 2/6 (29a)

S1 IZ- 2!2/m 2  (29b)

I + M(S'+S 2 )/ 2 SIS222 1 (29c)

If the TW product is large compared to one, the k - sums appear-
ng in the abcve expressions can be approximated by integrals. Let S -
SI +S 2. Define the following

P- +.E P, 6.-



w 2

0+

'4'W 4T d

12 2~I (1 + MS/N + M4S 1 S2/N
4  (31)

0

w 4

23 I (1 + MS/N + M4SIS 2 /N: : )2 (32)
0

In terms of the above integrals, the F.I.M. (Fisher Information matrix)
elements can be expressed as follows

2 2i  1 + A(,I )

Jl!= X1 + 2/)2 13 (33)
~J

J12 X!XM2 SIS 2 /12 i - (A/)fI2 M } (34)

2' 2' 1 AM ./121,
J 2 2  X2 (MSMs 1 /u) 13 2' (35)

Consider equations (33)-(35), which are explicit functions of I, 12 and
13. If

2 W 2  AW21 + MS/N >> M2 SS2/N2  M 2 SIS 2 /N -2 ( 1 - + ) (36)

over the frequency band then the denominators of the integrands are dom-
inated by the constant term, . + MS/N. Under this condition, the inte-
grands of I, 12 and 13 will grow ( approximately ) with w2 , 44 ar.d. 0
respectively. If, on the other hand

2 2 2 2 W2 OW21 + MS/N << M 51S2/N 1 SIS 2 /N 2  - + ) 37)

over some frequency band, then integrands of 11,12 and 13 will tend tovary ( approximately ) with wO, 02 and v0, respectively. Note that there
is no other possibility for the behavior of Hk .

Obviously (37) will hold only at large signal to noise ratios.
In fact in order for (37) to hold -

MSi/N P (k 2) -1 =1and 2

A. ..-.
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For example, if ( k2 ) ! .1, then MSi/N > 10 for i = 1,2. On h. other
hand, equation (36) will hold when

MS./N < (Pk 2) -  for i = 1 or 2.

Define the variable R

M- !SIS2/'1'23 a
1 + MS/_

We will consider two regimes of interest occurring at the
extreme values

<< (38b)

>> 1 (38c)

where tmax is defined as the value of occurring at the largest (co ..on-)
signal frequency, W.

When Rtmax " 1 it is shown in Appendix 3 that elements of the
F.I.M. can be approximated by

p.,

TW ( MS11N ) 2X 2 W 3W 2  2S 2Jl 2... .S/N( 1 + - 1 )) (38)! 2= 1 + MS/N 3 +5 S1

2 2 2
TW M2SlS2/N2X1X2 W 6 2 9 2 (39)

J12 1 + MS/N -3 1 -- 5 PW - -- 5 RW

TW (MS 2 /N)22 X 22 W2 3W 2  2 I (40)

21 + M(St+S 2 )/ S2 ~ (1+~2 1 -1

After a few steps of algebra,

" J-- I + M(SI+S2)/N x

OS S
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The error in est--.a-:ng a. is given b. euation (42) which emnpoys :he
conventin t io ; i,j = 1,2.

Var (;;) '! dr -- 2 ~ ... M.M/

3 2 (MS;/N) 2_ ( 2 _ S (N 2
I +.56- ow 1 +-M-S12 

4MS2/N3 2 M'S /N)' 2 36 12 (2
- - A

It will be useful to consider the above expression for bearing
error under the following conditiors: It was shown earlier that when
Rtnax < 1, one b.t not bc:h signal to noise ratios, SISi/N and MS2 /, ,

2-1
could exceed (AW) . However, both signal to noise ratios could be quite

2 -1
smail. Suppose MS4/N < (< " ) :14 1,2. One can show that

: ,-: f 5.25 ; MS/N; ((

Var(_ T t  2 AW2  2 x<
Var(;- a 2= " 

- 2 )( i->> MS/N >> 1

(43)

Equation (43) states that when MS/N << 1 the lower bound varies inver-
'4 2

sely with the product AW . It tends to infinity as la tends tc zero.
. i' 2 -1When (W- >> MS/N >> the lower bound exhibits similar behavior.

The bearing accuracy is nearly independent of the signal to noise ratio
within this regime since the bound varies only slightly over the allowed
range.

2 -1
However, if either signal to noise ratio happens to ekceed (W) , the
bound behaves quite differently..

2 -1 2 -1
Let MSi/N > (AW) but MSj/N (< (AW) . It is straightforward

to show that

Var(;i) a W xi 2 MS/N 1 <c 1, (MsiN)PW2 >> 1 (44)

Var(a) Z 2 (MXjW P 2  -1 2 1 (45)• s-(~jN21 -



2 -1
By definiiCn, MS-/'T << (OW so that the bearing error for

source j is uch larger than for source i. In order to ob:ain insi -- t
inzo the effects of the presence of an interference on the abi1ity to
deterine bearing, it w.. be usefu. to c:-.:u:e the fractional error,
%Var (ai) , defined as the ratio of bearing error for es:-a:es of a4 ob-
tained under the assum.tion that source j ( the interference ) is present
and located at an unknown bearing, to the equivalent performance figure
obtained with source j absent. The lower bound corresponding to the lat-
ter situation is given by expression (19b). With the definition for Xi ,
(19b) is equivalent to

Var(a-i/source j absent) (MSi I: 2

S2  0

'[TW 2 W2 2 -

2 1 + MS;lN 3

Therefore we have

Var(3i/source j present)
£V~ar(&i) -'

-, Var(ai/scurce j absent)

2 -1
For the low SNR case MS./ << (41;)

2 -1 r 2.03 ; MS/N << 1
-Var(a-) = (MSi/N W 1 1 2 -!-1.66 • 1 << Ms/N << ( W)

(46)
2 -1

For MSi/1 >> (pW) ; i = 1 or 2

&Var(;i) = 1

2 -1 (47)
&Var(aj) S (MSj/N PW ji

Equations (43) and (46) show that the value of the bearing error
associated with al is insensitive to the signal to noise ratio S2 /N,
since the total variation of the bound over the summed SITR is smaller
than 2 db. The resulting bearing error, however, is larger by the factor
( W2 )-I when compared to the case of source 2 absent. Equations (44) and

A. %



(47) , on the other hand, shows that one can obtai.-, u..egraded bearing ac-
curacy in the es:imation of ai if S4 is sufficien:Iy large so that
(Si/N) wW2 >> 1 provided that Sj is much smaller than S4

The case Rtmax >> 1 is considered next. Ap-endix 4 c=ntains the
detail.s leading t.. the followi expression for the Fisher ma:rix

TW 2L2  2 -

I (OW /2)

(S!/S2)s.. (afI + 2S2 /S. -sin(al)sin(=2V l + 2/5SW"

-sin (a) sin( 2 ) fl + 2/5AW2 } (s2/S!)sin2(a2)11 + 2Si/S 2

~(48)

It is straightforward to show tI.at

2
2 SAs j  Si

(A " /2) ( - +
S2  2S2'Var'3 i )  >(49)

'TW 2 21
X4 W!

Equation (49) decreases monotonically as the ratio Si/Sj tends to zero.
The fractional error cr penalty on bearing accuracy resulting from the
presence of a second source in the estimation of either al or a2 is given
by:

2 Si

AVar(&i) = (pW 2/12) ( 1 - - ) (50)

As Sj/S i tends to zero,

2
PW MSj/it

AVar(;i) (51)
6

%a P

.:.4- .. ., ... .., , --.., ,



2
Ow Hsi/NI

~~Var (a. ( 2

Since both products or. the right sides of (5i) and (52) are larger tho'I
one by assumpticn, the fracticnal increase in bearing error for Rt >> 1
is quite large.

N' Figure 2 depicts the fractional error for bearing ai with .Si/1
<< (OW 2 ) - I  ( solid curve ) and MSi/N >> (pW 2 ) -  ( dashed curve ) as a
function of HSj/N. The accuracy reductions are significant at a' v.lues

! of MSj/3 for t.e solid curve, but present only at te high end for
in the dashed curve.

aa

J-

J1

.. 0

i- --A 0

100

i ,, Figure 2

I t is worth pointing out that if one of the sources happened tobe at a known bearing, the lower bound on estimates of the unknown source

bearing has the following interesting properties. Let source j be loca-
ted at known bearing and source i be at unknown bearing. If source j has
a signal to noise ratio which is much smaller than (pW2 )-i the degrada-
tion factor is:

9V..



AVar(4i) = + Sj /Si  (a

ud-..g from (53a), the incremental bearing error rises linearly wi*h -he
ra:io of in.rference to signal powers. However, 1: the SNR of scur. _- ,
MSj/N exceeds (AW 2)- I as well as MSi/N, the degradation factor 4s:

1" + s/ i 2 -1

eaVar(4 ) = I (MSi/N AW ) >> 1 (53b)
MSj/N ;;2

2
Since (MS;/'N) W >> 1, (53b) is smaller than (53a) but large degrada-
tions in bearing error remain as result of the presence of source

2-1
2. If the signal to noise ratio for source i is large, MSi/U >> (oW i

2 -1
but MSi/N << (AW) , no degradations in accuracy are observed.

The relationship between (53a) and (53b) can be explained as
follows. Suppose Aa = 0 -- this corresponds to (53a). Any finite MS/N
musc be smaller than AW2 since p is zero. As aa increases, a large va .ue
of MSj /N exists for which MSj/N >> (AW2 )- . However, as 6a increases
sufficiently the beampattern will tend to zero and the function t will
tend to one. At this point there is no accuracy reduction in estimating
a; because the sources have become well separazed. Hence the transition
from (53a) to (53b) describes the effect of increasing separation on
bearing accuracy improvement.

2 -1
When both signal to noise ratios exceed (PW one can compute

analogcus degradation factors

"2 2 3 2 2

3M S1 S2 /N AW 1.5 MS2 /N AW ; Si >> Sj
&Var(ai) = - 2

2MS/N(MS/N + MSj/N) .75 MSI/N 1pW ; Sj >> S4

2 -1
With MSi/1 >> (pW accuracy reductions resulting from the presence of
a second source are large in this setting also.

At low signal to noise ratios for the source at unknown bearing,
increases in the signal to noise ratio for the source at known bvaring
tends to improve bearing accuracy. At large signal to noise ratios for
the source at unknown bearing, reductions in accuracy are present only
when the SNR of the other source is large as well. In this setting, the
optimal condition is S1 = S2 , where the error increases monotonically as
the power ratio deviates from one. Hence, even when the bearing of one
source is known apriori , the ability to determinine the bearing of a se-
cond, closely spaced source can be quite poor.

The results of this section indicate that a potentially useful
regime exists in the estimation of a particular source bearing provided
that the SNR for that source is sufficiently large and the interfering
source SDRM is sufficiently small. When the conditions fail to hold,

low.



bearing accuracy is greatly reduced in the multipie scurce seti~ng. in
the next section it will be shown that unknown s;ec:ra-l levels compromise
bearing accuracy further and that under these conditions one is always
aforced to operate with large accuracy reductions.

3. Bearing Estimation Accuracy Without Pricr Knowledge of Source Power
Levels

When prior knowledge of the source power levels is unavailable
the relevant parameter vector I becomes

[ _ = [ , a , S, $)IT (56a)

Consider the fo.lcwing partitioned matrix

J I 
J2 

I
[ =l 

(56b)
J 2T J

where Ji is the Fisher matrix associated with bearings only

a 8.r(X1) alnp (X/) J 1 2

[J- I j E j- - J12 (57)6ai - aaj , = J21 J22

and

EJ2!ij '_ E { 1np (X/8) alnp(X/) } [ J3 J14 (53)"a ai S J23 J24

"P 3 1a i j A E a - - =p (2 / I a n)/ 3 3
aSi  asi J43 J44

The total bearing error can be expressed as follows

Cov(;i,-j) 1 J 2 - JTj3-IJ2 (j

ADefine the matrix X

T -1
X A J2 J3  J 2  " (61)

e



The elements of X are as follows

2 2
J13 J4 4 - 2J1 3 J 3 J, 4 - J!4 J33

X!1 = (62)
det (j3)

J13J44J23 - J14J34J23 - J34J24l3 J J!4J24J33X! 2 = (63)

det(J3)

2 2
J23 J44 - 2J3 4 J24 J2 3 + J24 J33

X2 2 = (64)
det(J 3 )

A;.Pendix 5 contains the details of the following derivations of the con-
plete Fisher matrix. Define

2

M2

WT m3S!S2/N 3  (1 + MS 2 /U V 2

J13 (I + MS/N + M SIS2 /U' -)' (65)M
k = I

J14 W m2.SI/N 2 (1 + MS 1/N) ni (66)
J4 =  (1 + MS/N + M4S!lS2/N4 )z M 2-.

k 1
, WT

J23 m 2S2 /N2 (1 + MS IN) (67)
(1 + MS/N + M4S I S 2/Ne . )z M2

J4 WT M2 SIS/N 3 (1 + MSI/N I (6 .8)24 (1 + MS/N + M4SI2/N 268)

mfk -..

I'' " -% " " " ' " " "" '. " "" "" ' " % * " " - - ' 'k-- i k "-". . - i -".- .



3 - MS 2 /: 2 (1 + MS21:,) ( 14 -(2/=) 15 ) s (77)
6c 2

J33 (M/)( 5 i (S 2 /N) 14 + S-12/:1 (.S, 2/4N- :15) 13) (73)

2- (/2) I + ( 2/10) 13 (79)

J (75)2 5 + (AMSI/N): 4 + 2 1_MS/N (MS!/4,N - 1/5) 13) (80)

Appendices 6 - 8 contain details leading to expressions for the
F .I.. under various conditions. it is useful to consider properties of
the J3 matrix alcne before discussing the prcblem of joint bearing and
power estimates. The following statements are based on derivations taken
from the appendices.

1. When the signal field contains only a single arrival (e.g.,
S 2 = 0), estimates of bearing and signal power are statistically uncorre-
lated. The lower bound on the vari-nce o- signal power est:imaes for a
Signal of s-rength S is given by

2 -1

Var( ) , [ TW (M/N) (S)- - 2x (2. + MS/N')I

1 f N2 / M2 MS/N << 1
TW S2  MS/N > (82)

' 2. When the signal field contains arrivals from two incoherent
sources, bearing and signal power estimates are in general statistically

2 -1
correlated. For signal to noise ratios, MSi/U, smaller than (AW)

2 2 lVar( i ) >(MIN W 1 (83)
2z 1 + MS/N 3

2 -.
The degradation factor is proportional to (pW (1 + MS/U)) >> 1.

2 -1
-A 3. If one signal to noise ratio exceeds (pW ) ( for example,

source i ) estimates of signal powers are statistically uncorrelated.
The lower bounds are given by



WT2

J33 = " (M /1 ( + M S-"/U t'
I + MS/N + M4S 1 S2 /NT )-

zT(M/;)2 (1 -
J34 J43 = :(/T 1(70)(I + MS/N + MIS!S2/N, )

k = 1

WT M (/N) 2(1 + MS-7/N )WTq 21 (71)
J42= Z(1 + MS/11, MSi2/ 

(k = 1

If cne defines integrals 14 and 15 as follows, the elements of
J 2 and J 3 can be expressed entirely in terms of integrals i - 15.

f W2 w 2
14 (72)

0

w

15 1 T ( d (73)2-r MS/N + M S!lS2/N2 t):

0

With the following expressions from Appendix 3 for 'i and q2

1/2 2 2
qi = xi(A) . ( 1 - 2/5 ow +

one can show that

J13 3 3SIS 2 /N 3( 14 + (MS2 /2N -2/5)o 13 L 2 asin(a!)sin(a) (74)
6c

2

J14 M M2 SIM2 (1 + MS!/N) ( 14 -2/50 13 L L2 Asin(allsin(a) (75)
.. 6 c 2

J4 M3SIS2 /
3 ( 14 + (MSI/214 - 2/5) 0 13 ) asin(a2)sin(a)

6c 2  ..2 L AsiC~ sin(o)



Va() TW (M/N) 2  -22 132.-[2(4) L20 (,:2) (34)

Var(&i) > T (1/N)2 2

- r S 
(

Since
2 -1

MSi/N >> (AW

the lower SN.R source has poorer accuracy in spectrum level estimation
than the large SNR source. Both estimation errors exhibit degradations

-.' resulting from the multiple source setting, in spite of the fact that the
errors are actually unccrrelated.

2 -2.
4. If both signal to noise ratios exceed the value (AW) , the

estimation errors of Si and Sj are also statistically uncorrelated
! Vr( )• W (NN2 -l

- 2rN) 20 ( W2) j ; i = 1,2 (86)

We consider now the joint parameter est:.7ation problem. Suppose
2 -1

MSi/N << (W ) ; -= 1,2. Computations carri = _ out .in Appendix 6 for
the elements of the X ma-rix are as follows .

TW (M/I I) 2 21W2  12 A261 PW 2

-MS/) - 25 300(1 + MS/N)

+ 3r125 (MS2/I) (MS2/', - 2MS1 /u) 3 2W2 (MS/N) 2_ 6M2S!S2/N 2
5 1~ M~N + MS/N - 20 1 2 + MS/Nj

o. 6 2M2SS2/N2 1}87
T O 5(2+ MS 227)

X - TW M2 S S2/N 2  W2f 12 2 !IlpW 2

2... 2x lS7NF X 2  1- 1- 5 AW + 300 (1 + MS/N)

3 2  2 2 2 6 2 s51 2 S
30W_ 2 (MS/N) _. 6M5,5 2 /N 1-- 2 + I%20 1 .1+ MS/N 5(1 + MS/N) .1 +. MS/N

+ 3VW 2  (,IS 2 /N) 2+ (MS,/N) 2 (88)
10 1 + MS/(

TW (MS2 /N) 2 2W 2  +12 61
X2 2 = (1 -+ MS/N) -2 T 1 - (1 + MS/N)

" 30W 2 (MS1/N) (MS/N - 2MS2/N) - 3W [ (MS/N) 2- 6M2 S1S2/N2 1
+5 (14MS/N) 20 14+ MS/N



2 "6M'SS-/ 1 (39)5( 1 - MS/N )l (9

Cne obtains f cr the elements of Ji - X

J -1 - X1: 1 TW (MS1/11) 2 W2 XI 2  w2 W " 6 M2S S/IT 2

2.- 1 + MS/N 3 - 5 (1 + MS/N) 2

12 61/300 +3/20 (MS/NT)2
25 (1 + MS/N) 1 + MS/N

E W2  W2J2 1 - 21 _L N W S!S2/ 2 2  6 11/300
2 1 + MS/N 3 XX22 1 + S/N

+ 6 M2 SiS)/N 2  3 (IMS/N) 2

( 5 I + MS/N) 2 20 1 + MS/N

" ([ S, /N) 2 W 2 12 61/300
2 + MS/N 3 W  25 1 + MS/N

6m 25 S0/%2 3/20 (MS/N;) 2

5(1 + MS/N)4 I + MS/N

A t low signal to noise ratios, i.e., MS/N << 1, the 1 wer bou d on
bearing error is given by:

*ILI

*



p --- 1

Var a) TW W 24 2 W2' (9C)
Va - ! -s A

Var(i) > .27 7 5 7-,

The incremen -al error due to uncerzai-n.v concerning signal power -,-e'es
is defined as follows :

Var(&;/ Si,S2 unknow) _ 7
Var(a;/ SI,S 2 known) 2 (91)

At large signal to noise ratios, MS/N >> I

Var(a4) WSN 222 1 LO ( I + --- ) (92);z- MS/N 6 3S"

The incremental error due to unknown power levels is given by:

5Var(a;) (5/12)MS/N (93)
- 1I + 5SIS 2 /3S'

hwhich grows with %S/N.
At low signal to noise ratios the incre-ental errors due to un-

known amplitude fac-ors is a constant value of apprcximately 5.4 db. in
the large signal to noise ratio case the errors are likely to be even
larger and this suggests that apriori knowledge of signal levels might be
used to advantage in improving overall accuracy.

2 -21
Next consider the following. Suppose MS!/N << (AW) but MS 2 /N

2 -1
>> (AW ) Appendix 7 computes the following lower bounds. At low
signal to noise ratios for source 1, i.e., MSI./N << 1

I. -1

Var(a) TW 2 12 2MS/ 1 (94)'I ar( ) > !2 W2 75 - S2

2 W2 OW2  12 '1(5
Vat(2) -  X2 2  W2 - MS 2/N

from which the incremental bearing errors can be obtained

.Var(aj) = - 6Var(a2 ) (96)

At large signal to noise ratios for source 1 ( MSI/N >> 1)7,, ,~11 X12 T W2 2  2 SW$ }-Y

Var(a I ) xl2 2 2 (MSI/N)2  (97)

Var(& 2 ) X 2 12 2 2 (98)
'-2

The incremental bearing errors are

V./

•-4



i{vra=SVar(~ = 5a l = S-

The e~fec:s cf uncer:ain signal levels produzca ar ;- performance
ade-rdazicns, Parzic"!arly for a2 which previously exhibited no incremen-

tel bearing errors resulting from the presence of source 1.
Finally we consider the last case

2 -1
MS4/N >> (AW) ; i = 1 and 2.

From Avpendix 8:

Var(3.) 4 W 22 1/2 W 2

2,r (Si/Si)2 - 1

(100)

The incremental bearing error resulting from lack of knowledge o power
levels is

) , 2
(7 W2 1/2 (Si/S-0+2(.S.)& . Var(ai) = (R W2 2/ $/4 + 2(S-/Sa) -

- ((Si/S j ) -+ 1) (Si/Si + 1)

r 2

2 1/2 (S/Si) ; Si > > sj

- (RPW) x .375 ; Si = Sj (101)

2 ; Si. << Si

The above degradation factor increases monotonically with the ratio
Sj/S i . It is also proportional to (RpW 2 )1 /2 , which is by definition, a
factor exceeding one.

Figure 3 depicts the incremental bearing error due to unknown
signal levels for ai as a function of MSj/N for MSi/N << (pW2 ) - l -- (solid
curve) and MSi/N >> (pW2 )- I (dashed curve). In the lower S1R case for
source i, the incremental error increases monotonically with MSj/N, un-
like the nearly constant behavior of the fractional error for known sig-
nal levels of Figure 2. In the large SNR case for source i the incremen-
tal error decreases as MSj/N increases.

%° .%.

J
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Figure 3

Figure 4 plots the total frac'ional bearing error for source iit;m case cf unknown signal levels relative to the accuracy attainable
when source j is absent.
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Figure 4
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sors, the Iwer cunos, h" wver, be-c-.e unrea~--' : i -
b:er of sourtes prese nt nis known to the cse^er -_n - de

rc th da-. is ex-ected that when sue two scuras b
v er' close in 'earing, -he abi lity of the data to crrr e -redc- tha
-numoer : sources =resenz: will de:ericraze unless one nas access to very
lg signal tc noise -atios or l-n-; 0 obsea:,'-ion zines. Cr. t*-e other

, I - srearati-.s the two sources are expected to cc disting-
tis.Te -a- a much lower signal to noise ratios and shorter czservatiz.
wtimes The f-m situation is referred to as operazion below thresho ld
. awe -resolvabilitY of the sources and reacability of the Cra-.er-Rao lo-
wer bounds is questionable. The next section is concerned with the error
associated with a binary hypothesis test, where there is cne source pres-
ent under the f hypothesis and two present under the second. If the
probaz:... of error in choosing the inccrre.. hvchesis is low, .e

- -% scur-es are expected to be- distinguish a bhe the error s large,
resolution of the sources becomes unlikely and the ability to reach the
Cramer-R'ao lower bounds will be poor.

4. Froability of Error in Resolving the Tw'o Sources

Determination of the correct nu.*-.er o: sources p rese.n: using
si-nal observations is c: interest tc this stud," because the p rcIe m

hd se -light on the issue o: resolution. It is reasonable to expect t hat
with suffi-ienty . high SN?;. and lcn observation time, two sources can be
distinguished even if they are located at arbitrarily close bearings.
iowev, one expects that the ability to predict the existence of the se-
cond nearby source will deteriorate as the S,'[R and cbservation time be-
come small. This section considers this problem from the viewpoint of
dezermining the probability of error i:n choosing the wrong decision in
th follwing binary hypcthesis test

1/2
H0 :x(t) = ( 2  x S(:- i)+ t)

1/2 1/2
H, : xi(t) = (S) s!(t-t i ) + (S2 ) s 2 (t-zi) + ni(t)

Under H1 there are two incoherent sources present, which are lo-
cated at bearing angles al and a2. Under H0 there is a single source lo-
cated at bearing a0, where a0 is the "weighted average" bearing:

Slal + S2 a2
a ; and vi = dsin(a 0 )i/c-

S

Note that if S1 = S2 , a0 = a, the true average. If S1 >) S2  so that S
S1 then a- . The signals s 1 (t), s 2 (t) and s(t) as assumed to have i-
dentical lowpass spectra of width W and with unity height.

4. The following material is contained in reference (7] , pp.
.1 where lower bounds on the false alarm and miss probabilities in a binary

hypothesis test are presented.
Define the probability density functions of the received data



den-ica. io=ass spectra of width W and wi-h uni-y hal-h-

The followig materia! is con tained in referenze [7 , pp.W. Mb=" 4a4eS "

where lower bcunds on the false alarm and miss =robabilities in a Mia ry
hypo thesis tesz are presented.

Define the probabilitv density functions of the rec-ived dea-
vector X under the two hypotheses

p (X/), p (X/)

the log-likelihood

p (.x{/E1! )

p (x/Ho)

The likelihocd ratio test compares 1(X) with a threshold r, where

P0 (Cl 0 - C0 0 )
Z(X) r and r = In PI(C0! - C1!)
H0

c_ ( ij = 1,2) i- the cost of choosing hy-pothesis H; when hy-

pothesis H occurred. P4 the probability of hyothesis Hi occurring. In
this problem, the hypotheses are chosen to be equally likely and the
costs equal so that r = 0.

The moment-generating function of ;(X) on hypothesis H0 is

M IH 0  = e p;/ 0 (LIH0 ) di

Define A(s) as follows :

P(s) A In 42/HO(s)

Because I(X) is a function of X, the above integral can be expressed70
I/0-(s) e f e s p(X/H0 ) dX

Then

i(S) In J (X/H0) p(X/H 0 ) dX (102)

"'

Upper bounds or. the false alarm and miss probabilities, denoted by PF and
PM, respectively, are derived in reference. The bounds depend on the
value of s for which i(s) = 0. The bounds are given by

'V

•A



P - erfz[ s ( ) 12.' ex; (s m ) + (s m )  (103)

e r er_4( s m) cs M)11  exp;L S-1 + ( (s) -14

(s.) = 0 (105)

wnere erfc,( ) is the complementary error function

erfc, (x) exp (- u/ 2) du

x

Under hyo t*ess .0 , there are two signals present and the cov-
ariance -affix of the sensor data has the form

KOC 2  0

I 0 Ii. ' x o 0(W,:T)

KO(k) Ilk' + Sl(wk)-VV, + (

Under Fl, Ki is also block diagonal but with the form

K1(wk) = Nkl + (SI + S 2 )v: 2 .

The steering vector Vo representing the single source under H1  is at this
point perfectly general. A particular choice of vwill be included at a
later point.

.,, According to equation (102),

'-a.

,%~

U
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• /4

Pc . .... ) is rv -- "

In IS ] [ de .'; O )  xF

de.(K )1) d_= (SKI + f,-S ) K0

3 = i ~ [det (.T) de~s e .s~ )

Based on calculations carried out in Appendix 8 one cbtains the
followig. ex;ression for W(s). Define

1 2
, 1 - Re

XQ m 2 S S2I ...2

X i 1 - -s .e ( (v.,v1 ) (v" v2b) (v-2w))

z - 1 + MS/N

WT

(s)= In [ i + R2 In 1 + ( (S/S 2 ) 0 ! + (S/Sl) 0o )s(_-s)

k= 1

+ Xl S 2 + s2(1-s) R MS/N ( 12 + t0: + t02 - 2 X ) (107)

Equation (107) is a function of the two steering vectors v, and

v2  as well as the third vector v0 , which is still perfectly ge.eral.
Next let vo represent the steering vector of delays for a signal radiated
at bearing ao

Slai + $2a 2

do =
S

After simple computations carried out in-Appendix 8 one can show that
.(s) takes the form

.,- .. ....... . ........ .- " "..... .. .. . . .- ., ._ .. - '



. _..-- order -z find -1-.a_ vaiue s-.., "t- ._ ae -- _ I s - if ~ _ : -

ated and set equal to :ero :

T'-" 2

;a -
' L.S) = 1n - -k~ - ______

I

I- r rder to cbtMin the sSlu-io tn ... S us -..f t c nsi e
velum of t B t ' .w-. Supcse the an;. edifference, La up= w*-4n

=deends n==enec to ! e ex'_re-.e>: s-al' . For a.. finite signal to noiserat zs (and hen.-ce fini- t - ,3"
rats(-.: a_ of ) there e:. _s:s a value of -a suffici-
en-_" sa-ll so th-at th*e prod'.:

/ wi..-. 'e sna.:rtan.one. :t will beo:-e apparent late. -h- a t.res--oi
regicn, abcve w"hih :h err:or probab*iltv4 --_ tent's to zero, wil depend up-

, on a varie:y of parameters. A low probabilit7, of error indicates that
resclutin. of the sources is likely. An error near one half indicates
"ha- the data is essentially useless in deternining the nuber of sources

' present. Since the minimum angular separaic. which the two sources
-i can be dis:in;-uished is of u!ti-ate interest to this study, we choose Aa

so that 2 is smaller tan t,. Then the ;ara=eter co-binazions
necessary to cause the -ro'_i-i o, error to vanish can be determined
!or any particu.ar L.

With a few steps of algebra -t :s possible to show that the sol-

4 u .icn ;Is.-) = 0 under the stated ccnditiz of kvW2 << 1 is given by
2, s- = 1/2.

Appendi:x i0 contains details leading to the derivation.
it is then a simple matter to demonstrate that the false -

an! miss probabi4t -
' s: as defined in equations. (103) and! (101) are as

f o1los. Ap-endix 1: ccr-tains the de:ais of the derivat4cn.

-_W 2 F2T 1 1/2
P = = Pr( c e (. )2 erfc. ---i RA5W 2  (:0 )

Equation (109) reveals a dependence of the error probability cn
two different functions If one defines the new parameter

,•.,a a T RA
20--



?r{} = exz ( - f2 ) ' erf=: I f 2

;C,: a .h-- as ah .r;-u-n -: cf z e a , - e : .... I . ; ... _
on.. a..) will -ed t er.. The r wi l__ also tnd t
_er _ -.-e argu.en- of the co,.-an.:_r-" rn e:.:e one. When
n<< 1, one c:ains

2. -2./2 2
.1 rW=) - (l1-r 52 -5-52 +

W- Z s near equa to one half Ue hese - he two sur-
cBs cannot be distinguished and Cne 4 cera-in- below the
th-shoId wic- i s d efnd by

1/2 2 2 2
TW 1 M S- S2/N (Lsin( T) W)

*2= I < 1. (110)
20 1 ms

A the C'her e:,: ra-,m E ,: is Ca- i a >> tI. probbii-v _
Cf error will tend to zero. ?. earran. -er-- in R and solving for A,
one o'zans the following ,in iu- angular separa-- c acheve abov:e
threshold oreration

2 2 2 2 -1/2 2 2 2 2 -/2
M SS/N L sin S) "-= r . S'/ L sin (a) .5 1A = > 2.2 ...a 2.:(.,;, I = I (W:) 2.25

[(1 MS/N) k-i2 J L (I MYS/N) A-in2  J
(111)

If (L/\=l n ) = 10, a = :/2, TW = 100, and MS/N = MS2 /N = .05, resolution
is ;ossible when > .15 radians = 8.6 degrees. If the signal to noise
ratios increase to .25 each but with the remainin parameters kept fixed,
.the ninur resolvable angle difference is 5.79 degrees.

Detectability of two sources from a signal field tcn:a: n-- g tw
closev spaced sources that are overlazping bo-h :temporally and spectral-
ly is related to the resolving ability of the array. This section has
deter.ined the necessary parameter conbinations that lead to accurate de-
tection. Under such conditions, the two signals are distinguishable and
it is believed that the Cramer-Rao lower bounds can be reached. When the
ccnditions are not satisfied (when one is operating below the threshold)
the two sources are essentially indisinguishabe Without aprri know-
ledge of the correct nu-ber of sources present, one simply cannot hope to
reach the Craner-,ao lower bounds.

-2
I
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r a raazt 3_,sSan ntsa anz are reeie a:- eq a sy Sa ed
lin arra intne esencac, sza:ia - -:at Ga-ssia 7 nise. Th-e st-

:es ar t .n -a e' S~aze. wner :_e.. dfer-zei ern
is ~ a~r ta~a teamw~h.T. scur~es ar: Cver~a;;:n; !:oth t am-

;orally and spectral-,.. The spectral saes of the si;nals are taken' to
2.w~ass, reczang'.-a I.zr' efn: ir. iP.h , 'C ih ;s54ib2.

dI;f f er a nt h e i;h~ The t.:if-= se~:o s~az:_';, d, as taker. to ze cr.e
h a theaS4 si;na 1 w a ae en Vt- a: ~ h 1;h es :r q-:z n yin th e c er-ap-

si: s;n a band, with.n t--'' >e;h > ~ .Te a::rca:: or the
s .A. C _Si~ - -: :: -- IMe£-

szacez Con-'.::'on o: scz,.rces, =n- tz : t:hs in' a s ett: i: Whi
r e as :.. acuaes -ti7:a-es cr e:e aeen:-; may '_re e::ezd "'n t
azse::.e of :.e -:;SZ:r::e.

17. cr d er 0o a sC SC:r.:t e s. Srt,- the
C" Oq e S:: e4 C,:,e C nC4r CC a r - 1-
o:: -7-. th t-,;- st.:r sC:: nd s*** the bear-,esi-t sorr co4- z s

es::te w:ha sin;le so:-rc cl was ccr----e. **..- . ris.ts
S tt-, s t : 4 oC.f known 4i;7:. ee ar e as--- -s

2.. E.enwhen~h beri f cne or i:h= Scrcs is k:.-.cwn a= _---
zern :..r th~e sc-,r~e a: unk.:wn 1-- ; is szrcn;I, dy r

~ if te S;R. 'of the known' scourre ex~eed- that of the, -~':soIUrre
ah degrada:in fato reduces as the S:?. of "-.e 'knwn source incoreases
bev~t~a we!-' definade 1li-:: and. then satu--rates a: a -cnr'.er_- vaue.

* 2.W:-'en.bt sou,- ,ri:; are un*-:w-. and the two si;nal toC
n 'ose ratios are m: s..::Zer the:n th-e qa:

the. the arr:;of either bearn; est:nate is de;:ra~e4 by the factor
>~) > . htis re ime , the arouracy o f either sourze be aar n :s

re----'va' y una------- by t:. .... of i :t rri sourr:-e, ~--
s;.ato: nzise ratios are less than -2 7ua::;:a nr-_ to a=:e_.

3. 7-f cne of the S4;7:a to no4 Se rattocs ex:zeeds

1 2

'!a. the other dzes not, the s itu.at o:-. is te: dif fre. 2 : t:s case
the lar-;er SM?. sourze has r'.o performance degradation~s resultin; tr= t , -
;resenaa of the second rnearty sourre. Fence one can ob_-ain go:od est_-:
t _4on a c ura y e%,en in the presence of interf erence fcr t' e 1 are SM



so..rze Th-e ower SNR source, Cn th ch e nd as ar;_ dg r ada-Zns
accura-y which are -- ivelv insensivi' urncreases -he~~o'.int-rfe-ranza S:N. (= -as _c-ssed in i;:=-: Z)

.o-h signal tc ncise ratics e:xoed Zthe above qua-i
the either scurce beari-ng is again degraded as in the low
si: gna! to noise ratio " regite", with o:.ia performance acheived wIen
the power ratio is one. The error for bcth sources is propcrtional to the

n.e=fence source power.

These results suggest that if the signal . evels are kn.w. aprori:, h_

power level rai iS an ipr tant qu an: -y in d eerrnIng bearing
ac:-racy.

5. When the sign al le% els are unknown and both signal to noise
ratios are low in the sense of tna acove, . e.

'5--

the accurac-reducion over the kn.own si:nal level case for either source
is independent of signal to noise an--i and equal to 5.4 db.

6. if either SNiR is larger than the above factor, bct, estim-
ates are degraded over the single scurce accuracy, unlike the re u! det-
ermined earlier where the larger S?. source suffered no loss in bearing
accuracy. e s from unkncw, signal levels arepcricni etenratierors.....

to -the ratio of the to smaller source SNR. The abso-
.. e error for the lower SN?. sour= increases with the interference Pow-
er.

7. If both signal to noise ratlos exceed the value described
earlier, the absolute bearing errors r-se with the-3/2 power of the angu-
lar s;acing and tend to zero as the ratio of source to interference pcwer
tends to infinity. The incremental error resulting from unknown signal
levels increases with the interference power up to a defined value and
then saturates at a finite value.

of the Cr .r_Ra lower bounds is ..-ikglv

th two szurces cannot be disting-uished e., the correct number of
sources inde:erminable from the data ) . This question was pursued by
deterinn-; th.e probabilit of e in chcosing the wrcng hypothesis in
the fclzown; binary hypothesis test

Under H 0 , there are two signals present;
Under H- there is one signal present radiating the total rece-

ve signal power ron. bearing angle aC located at the we4ghted average
bearing

S

he--- ---------- ne stu.dy is tz deternine the M:n u angular diffr

p. , " ,* "- - . . -',, X C ./. --.... , ., - " ." -. .,,: r '. z,, } - -
"

. .- ' ... . . - . '.-



E 'p

en=e, assczi -azd wi:h a given set of parameters C Sr...... L/X-." ) :or"h h h_ error .r .. - 4 7 4 ..... 4 he:c-4s
t*- ... "-ab~-' i' chcosi~n the inzorr a c hypczhesis winl

-nd t C zr:. For these cOmbina-ions of parameters the corract numzer 0:

scurz c -_ d trmi- ed frzm the data, ard one exects that the earI i'
c-P,.d Cra.er-Rao lower bounds car. be reached.

h_ results show that the aigi-1.ar di :frence associted
wi-h a small erro r probability can be reduced by increases in SNI. and T.

uan~i-a:i'e ex;ressions for the required parameter combinations are
presented which lead to existence of a threshold, below which the data is
essentia!_ useless in determining the number of sources present. In
this reg'-e r a'- -'-4tv of the Cramer-.Rao lower bounds is hs ss
ect.

%

.1

-p

S



Appendlx 1

Deriva::ior. of equaticn-s (.)-(15)

The el.ements of the 'Fisher Information Matrix can be c ompu tead.
from the following expression:

TW
=-T -1 T- - Tr -1 Kk

k=

Kk and 'Kk are gi4-vean by

Kk =NkI + S 1 Vi:L + S 2 VZ 2

Kk 1 - Gk+ 7n2 '2v P1 )]H2

Since vi is a function of ai an-d v2 is a function of an, let

R4 -(v.-.,; so that

(Kk) = - Gk~ I IR - PIP2( Rl. Z2v.2' + VX.2Z2 RI)

71Z 'P + nV ?n- Pj1  (YV*V- YZ~n,2 + Zv~ y .z )

Then.

2C =, 2k 22

-and

y(Kk_ PIR -~1 P2PI(RlX.2Z2t + !.2v2tR1 ) GkPIP2l

(Yz~P1+ YZt2- PIP 2 (Z!vljv2v2 ' + Z1 H~

'With ak=Sltwk) R1 , it follows that

aal aal(P11- PlP2 (Rly.2 Z 2 R

!.2.2 R 2 PIP2Gkql PlyjjjtR 1 + P2Y.2X2tRj - 1P2(YllX222t

Y_2Z2t -VII t)7



With the idantiti es

2 (vv d* vi - ** a vi
21 (:,r I 2 ILI 'v" a"'- (Z)

~. d2 r ~-

Tr (RiX-2 v2 Rj + vZ2.R.2 2 'L ) (v--'Vl) (.a~iv 2)

(Y-2 ' ) ( vi 'I'll + (Vv~ (Z2'Z-I) C-= -- ) +

avi

Tr (ylvl "F).= 0

Tr (v-,vv R~ - -

Tr (1 i Z22 Rj + y~y= Tr (. -iZ2 :' ZrIv- )

With the u~se of the above expressions, one can slhow that

-Tr - -K 1  k Gk r - + 22

(1 - Pa.)

where = (1dl -z IV,) ~ ~ (a.vy)
i a.



3

2 ~ 'X 2

=2 Tr ( R' 2

Jii then becomes

TW

J11 Gk fSl wk)/N(wk)PI Z1  P 2 91~ + Pi2 P22 Gkql' I- (A3)

Using analogous computations for element J1 2

-Tr ( -Kl ) - Gk(S2()0/C~wk)) Trr 1 RRaal 8a2 lI2 l2

-RlZ2Y2R2 + v 2 v 2 R1R2 2-GkPlP2R71 P lX1Zl R2

- 22Z2 R2 + PlP 2 C-vlltv2 Z 2 'R 2 + ___.v'Z~

Insetingthe identtes

Tr (R1R2,) a= -i X'-212
* aalaa2

a 2

Tr ( lvq-4 2 + -~-n R- l) ( -*
.. - * -a 2 Z

T.. . . . . . .. . . . . . . . 2* w

Tr ~ ~ Z. .. .. .. eR2 r*ZZ '-12 Z '



4

Tr (Vv__2 R2) = 0

Tr v~v1 v v 2 v vn Rvi +R2 -V ay (vRv v-v7 v-1 7-)

U'
1- = (V2  )

it then follows that:
Tr" r 2 ,2

. ." 6 ~ - Gk(S2(6)k ) / N ( wk ) )  lS2iv2
.- lTr ( al a'2 122

1 - P2) P1 + GkPI2P2 (1 - P2)qlq2 (A4)

J22 is identical to element Jll with the exchange of subscripts (1)
with (2) in (A4)

TW

J = Gk P2S2(wk)/N(wk) Z2 - Pl + P2Gk 2  1 (A5)

Equations (A3) - (A5) are equations (13) - (15).

-r



Appendix 2

Derivation of equations (25) - (27)

According to equation (16):

= a 1it 72 i ' 2

With

N

v!iv21 cos(wkd(i - j)(cos(al)-cos(a2 ))/c) (A2.1)

i,j = -N

it follows that

N

!.¢I v21 kd( i  - ) sin(al)sin(akd(i -j)(cos(a!)-cos(a2))/c)
i, = -

D - .2)

Introducing the notation Aa = (aI - a2), a = (al + a2)/2, along with
the assumption that the argument of (A2.1) varies negligibly over the
the i and j sums one obtains:

2_ 2 (wkd(i -- )c 4  2
,8- )c j)/c)4

*IY2 -"k j)/c) 2! Ac~ ~ a sin a

Aasin(a) sin(al) (A2.2a)

With

N
* (i- j 2 - 4MT(N + 1) (2N + 1)

6

For large M, N M/2 and

" Truncating the series of (A2.2a) after a single term:

2 M2L 2 Aasin (a) sin ( l_) k2  -"(A2.3)

.. 1 ~ ~ MZtv6w



The exnression fcr y is given by equation (18):

- ....__ S ----

. v- (v -=-, + v'' 2 (-2 (V
--= v

... al -- -- al . .. _

(v: v V) +Iv' 2 - v (A2.4)

I al aal

For A viFor far field scurces, vi'v v v2tvl Also vm V I V
... -- - l -- aa

Hence the niddle two terms of equation (A2.4) are identically zero.
Carrying out a few steps of algebra the remaining terms become

2 +M

+ ) (A2 5

6c-

Finally
-= - -2 av a

- iv,

. For large M we have

=.".=

2_ 2 48V 2V

M ML sin2(al) wk2  (A26)

i, I =  6c-4 .

2 NN
Sa2 2= wk2d2sin(c1 )sin () 22 1

!M8a2- =  - j) 1 -
- ,,,@ @i , j = -N

aalaa2.7



3

( sasin(a) ( )) 2 d 2 k 2 )) +

" 2L2sin ( a2)sin(a 2 ) 2  +_ k 2

s i -ic 2 ) k ( 1 +- . 6 + (A2 .6)6c4 D

If one exchanges the index 1 with the index 2
in equations (A2.3) - (A2.6), expressions for Z2, 2 and q2 can be
obtained. Substituting the variables

2s4n2 1/2 2 1/2 iv ~ V)l

Sn (al)2= L sin (a2)) , = 1-'
6c 2  X 6c2

into the above results and with the definition

Hk 4 [ 1 + MS/N + M2S21N ]-

substitution yields (25) - (27)

Wm

jll = Hk(YSl/1) Xl2k 2 [ + lk (MS2/N) 2 (A2.5)
k = 1

WT

J"= MSIS2 1N X 2w 1 - 6/52[k2 - AkHkakS2/N ]
k=2

TW

J2= Hk(MS2/N) 222wk 2 + ( 2 HOMS2i/) 2  (A2.8)

k=

4".'

-p.



Appendix 3

Derivaticn of equations (39) - (41)

Elements of the Fisher matrix expressed in terms of integral
il, 12 and 13 are given by equations (33) - (35)

X = 2( S/N) 2 I1 + (MS2 /N) 213 (A3.1){T 3
J12 = XIX 2M 2 (6/5)p12 - ,2 SIS 2 /N 21 3  (A3.2)

= 2 7 + p MS 1N) 213 (A3.3)

By direct integration

W 2.
-. i = T + a wd

MS/N + M"SIS 2 /N2 )

2 2

SWith - ( 1 - - + . ) , terminating the Taylor series after
2 5

a single term will not materially affect the value of the integral,
. since the denominator of the integrand is dominated by the term 1 +

MS/N. An approximation for I1 is as follows

W2
G2d

2 1 + MS/N + M2S 1S2 /NDIPWz/2)0
R1/2

Changing variables: x A WX one obtains the simpler integral

- T 1 -3/2 x 2 dx
2z 1 + MS/N 0 (1 + xz)

1% 0

___1_1 1/2-1~l 12'
.. = TW 1 1 1- (WR ) tan (WR/

2w 1 + MS/N
'a-



.*,,

2

For RW << 1

1/2 3 1/2 5
* 1/21/ (WR ) (WR*tan-4 (WR!/T = WR - ____ +
-*. 3 5

One then obtains for Il

TW 1 - 3 RW2 + (A3.4)
2r 1 + MS/N 3 51 -

After si-ilar calculations for 12 an 13

_1T 1 2 1/2

( 1 - 3(W R)( 1X- (W 7)- t/an-- I2 - 2,r I + MS/,N 3, - n R

4", WR!/ 2 ))

W 1_ _

_TW 1 W 2  W2 R + ) (A3.5)2z= 1 + MS/N; 5 (1 7

413 1 !0 W2
3-2: (1 + MS/N) "  - -7 R ) (AJ.6)

Substituting (A3.4) - (A3.6) into (A3.1) - (A3.3) one obtains

ji. TW (MS/1N) 2 w 2 2S2 - ) )
S1 + MSN 3 (1+ W S1

TW m2SS2/N 2 W2 6 2 9 2
J12 =  - !-- 2 - --- W2 ).2z 1 + MSIN 3 - "5S

TW (MS2/N) 2 W2  3 2J22 I - + MS/ 3 - + R W2( 2  -1)
/N 3 S2

which are equations (39) - (41).

'p

" - - - --5. . _ . . . . - " . -.%. . . . - -.*- " , ." . . . , - < . . . , . , , . - . , , , , , _ , _ __-, , , , , - - - , . . - - - " - " - ' , . " . - , , .



Appendix 4

aDeriva-izn of equazizns (4S) - (50)

T he elements of the F.I.M can be expressed in terms of
integrals 71,12 and 3 , defined in equations (30) - (3Z)

W
2

- *1 + MS': +M 1S2
0

= i .....1 substituting the defin. 0in for 

R 2 S, S2/N 2 p/2
1 + MS/N

an d c..a.n,v 4a ra'Ies x , write

1 T 1 -3/2 x d:-.
"I + MS/N f 1 + x' - OR-ix4/5 +0

1/2
For WX << 1, terminating the t series after a single term affects
the integral value only marginally since the denominator of the
integranc is dominated by the constant term, 1. When WRI / 2 >> 1, the
situation is potentially different because the integration is carried
over a region in which powers of x contribute significantly to the
denominator of the integrand.

The integrand of (A4.2) is strictly positive and monotonic;
since the integral is taken over the positive line segment ( 0,WR1 /2

the integral is also strictly increasing. Let g(a) :

(M-I)/2
g(Aa) = 1 - I1'2 2/2 1- M-_'--_ cos(wk(i - j)dAsin()/c)

ij = - (M-l)/2

A Taylor series for g as function of &a is given by

"-() = g(0) + &a g (0) + Ae g (0) /2 +

Because the Aa - dependent part of g is a sum of trigonometric funct-
ions it is straightforward to demonstrate that the following proper-
ties of the infinite series hold: The odd ordered derivatives of g

0.4..



ties of "hstrni..i .. r. hold: The odd crdered derivatives of g

vanish. The even ordered der:a-ives alternate in si;n, with the ex-
oe.::-n of the zeroeth derivatilve whi-ch is identically zero

'-'.'3 g[ , g (C) = , (C' > O, g 0 ,  , g(0) < 0

" Because g is an alternating infinite series, an upper bound can be
found on the error caused by terminating the series after a finite

-. number of terms. The error can be no larger in magnitude than the
.... magnitude of the ( n + 1 ) term of the series terminated after n

ter:s.

One can as a result bcund the intagrand of - The fact that
the integra! is strictly positive and nondecreasing means that the

can be bounded as well. Write

- ".' s th-t i$S- s-/"/ ( Ms'8 = +R(2) .With x =

.... A / I ,

Therfre and therefore the denominacor o te- inte-rand of (A4 .21
can bea upper and lower bounded

2 4 2 -1 4 2 4
1 + x + AW R/5 1 1 + x + X Ax /5 + - 1 + x - AW R/5

which yields bounds for the integral

.- 1/2 1/2

x'- x Rdx x 2 dx

,i+ x 2 - 4x5 + x2 xW/ -px
4 /5

0 0
1R/ 2

11+ x2 dx

+ x + pw R/5

0

4
It will be necessary to consider the magnitude of AW X /5 relative to
one.

04

V . .t.
<-]'] I will A *- .. neesar to1\,. Jonsie the agtud f 15rltiet
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~I --C 4

.02

. 100

2 2 2 2
44"; = </2 ant. L,'\.a.< = 10, ther" :I = A (.20) (2 /6 so that if W

=.'= A _ = 7 d=-.=

Unless .... the prod.:ct X/E w ="-,. 'e smaller

than ce. re order for W2,R to be as large as 100, the signal to
i :13era-.ics nust be as large as 30 db if g 2 is to e saer tha

-" one tenth. Based on these considerations we will assume that pW-R/5
<< i. Under these c -nd-tions the upper bund on th e inze-ra~beot-es :

0

The lower bound is given by

"1/2
x2dx 1/ 2  + O 4+W4R/5 )/2 tan-l( wR 1/2

11 + X2 +/W2 -121/2
*l5% 0

,. -

A:" Substituting the above results into (A4.3) one obtains for the upper
bound on I1

,... =i-ax TW 1 - 1 (WR 1/2 1-( W 4  P/ )1/2 ta -I(WX 1/2

1.2.." - 2g 1 + MS/N 1 - ) - R$/5) tan )

min = TW 1 I 1/2 1  4  1/2 tan- 1/2) -
1- I 1 + MS/N 1 (W (1 + W4RP/5) (W 6

For WR I / 2 >> 1

a " '" ' . - " , """"""" . " . . ' '"" - -", -" ' ." " . , . - . - - "



NA

tan i W.3 ) - ( ; 
I /  ) - +

. and W ,' ,'5 << I

I W4 RP51/" 1 __ _____+1 W4R/5 /= 1 "10 " 40

sc that

n TW 1 W 1/2 -: 2 1
2 1 + MS/N I - (WR ) + (W R ) +

3~ 1/n -

W R' '*P1W'

' :- T" !-. 1/2 -! .7 -I

2-. 2 's,,: - (W ) - + W) +

S3 /2
__ - W I >R

The di f ferenze between the upper and lower bound has order
s-aUlor than (W?-/ 2 ) The Fisher .atri:x will be shown to be
rDnsin r-ar to order (WRI/ 2 - 1 and therefore the upper and lower
bcunds will yield identical results. Therefore we write

TW 1 -1 1
S+ MS/N (WR (A4.3)

One can obtain analogous upper and lower bounds for 12 and I3

max TW 1 1 -' 2 -1
2 1 + MS/N 3 R

" + 3W2 P
5

- in TW 1 1 X - 1 - * -1
*2z 1 + MS/N 3

5

max TW 1 -2 1/2 -13 (1 + MS/ r 1 -3/4(WR ) +
.(1 S/)

. 4-



5

3 W3 R1/+ 3i W I /

4C

_ TW 1 -2 1/2 - i

3. (1 + MS/U) R (1 - 3./4(W1

- 3 3 1/2

40

2The upper and lower bounds for 12 and 13 differ by O(#W ) and hence
he upper and lower bounds nearly equivalent results.

12 TW 1 - 1112 -2 1+MS/N 7T (A4.4)

13 TW 1 -2 1W,1/2 -1
13 21 (1 + MS/N) 4  1 - 3/4 ( , )) (A4.5)

.2 -1/2

Let y z (W R ) .Substituting equations (A4.2) - (A4. 5 into (33) -

(35) one obtains :

-= TW 2 ( I + 2S-1 3S1

Jl = X 1 MSN R + 22 1

I < "."(A4.6)

J1 TW m 2 SS2/N2  -1
J21  XlX 1 S/ ( 1 - yr ) (A4.7)

2 1 s/
J22 TW 2 (MS 2 /N) -i 2, - yut/2( + ! ))

2n 1 + MS/N $2 25 1

4. (A4.8).4

Dropping the O(y) terms in (A4.6) - (A4.8) yields equations (48)
(50).

.. :2:K ::K-.'. o
"9 9.'
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-Appendix 5

Derivation of equations (65) - (71)

I.. in this appendix, the elements of matrices J 2  and J 3  are
covPuted using the following expressions for arbitrary eleens of

a the Fisher information Matrix

Ji.4 =r K T r Kk- i  :
a E i  aej , aE- ae-aa~ WTT

Tr aE) K k i a~

.k = !

Fr.-. section2, K,, and Fk  are given by

Kk = 'k I + SIV!V ! - + S2 Lv22

I - Gk Pl:_IZ + P+vv - PIP2 v v__v_2

"'" v 2 v2 'wvv) }

where

P MSiN - MS2 / Gk = 1 PiP21v 2

Calculation of Tr{ Kk a Kk K- I  Kk

We have

also let a vjvjt A R and - Ivltv2 12 = oj Then with

Gk 2 PiPj qj, it follows that

'Kk = - N} P . - Pi(R-jvizi t + vivitRj) PiljGk( vYivi +
J '%_%, aj Nk RJ -P~~

vvj t Pj - PiP3(viyitjj + vj-j vi-it))I"

Then for i * j

-.,,.



+ 
2

V4 -,42

it can be shown that q4 = rvvR) One can t:.en octzain for e a -

= ____ 2 ' 2 * 2
1' 

1  j I - 2M?4 Gkjj (, "-) + Pjz 'v2, I _ V-'

Substi:utin; the definitions for Pi, -j , t and Hk~

G,.,[ + XS/11 + y 2 S1--/,
S+ 2,'S~/~ + MS 2 / N) I

after a few st~ of alg'e'ra

aK- _ - -

-or j, v4= , ('%5.2) becomes

G..' T r - 1,7 -j

Z . vV4,7 Rj) + PiqjGk (MP~iv~jZ .~ Mlvjvz

N>Pipjz"z4 * (z~vzjzv..L + v j (A. 4

Since

T{ Zj-vj-Rj 0 and Tr f j(,Zzi.: + =vz- M

(A5.4) becomes

-~i j~CPivv-I2 2 -2

Gk~iqj -?;i P jk (M i --1 tv'-' + M Pj 2M~iPjzI v,4 2 1N4k J~~

so that

a- Mk = - ( 1 + MSi/N 4 j. (55

K:Calculation of Tr {~ L-8Kk)
-wi as

.4%



P; V. + ?4?- (,. +. ~.

- -l ~ a 

ar- a~k -_? -

'..2

-. *i + -jZJ i: k ij 1Z2

22

-- Gk /N .. 2 / -' 2, * 2
* CI ~ M~j/N) v +vV~v1 Pik !Z-. Y" ~ .- ---

..j 4 ~~~ 47.7 v V 4(. kiV Ivi
2

ci ~:sjin~ ~ZjYi ajX&jZ.

( -% kT~ + iZ

E4 Equations (65) -(72) can be obtained from equ~ations (A5.3) ,(A5.5)

(A'l5.7) and (A5.8).



Appendix 6

Deri:at . n c: eq a:-o..s (65) - (68)

T-e eements of J2  and J3 can be expressed in ter.s of

..tegrals 13 - 15 as indicated earlier. The integrands are functions
of the infinite series = p 2 /2 ( 1 #w2/5 +

-' T 2 d
1 4 =2,z (I + MS/N + M2SIS2iN )

A sezcnd order a roxaalon to t is as follows

T I1132WR1/2 x2d.+ R! + xA; + R--IAx-15

The ratio of first to second terms in the series at any value of x

2  2 -1

R-.4
IR fi

According to the definition of closely spaced sources, the a'ove
ratio is guaranteed to be a large number, provided the angular

spacing ( appearing in the function ) is Sul =4 cie y s-al, it
will be assumed to be the case that pW2 is much smaller than one so
that a first order approximation for { will yield a useful
approximation. One can then work with the following simpler
integral:

4.

4,.



".,

1/ 2

14' T 1 R-3/ 2  1 x dx
-2 (71+ MS/N 1 x )z

0

After direct integration

14 = TW W_2 
___ 2- r 1 1 + R) -1/2

-. 2 ( 1 + MS/N ) (2W+ W

tan- (W R1 /2)

TW 1 C 1 + W 2 R-1/2
= 2r 2 1 1 + MS/N )2 1 + WWR

tar-1 (W 1/2

Fro-. Appendix 4

13- TW 1 1 2 C
2 ( + MS/N )z - W

-tan- 1 (WR1/2) 1 1t (I 1 + W2R

2
For RW << 1 one obtains the Taylor expansions

TW 4  10 W 2__ +1063 2: 5( 1 + MS/N )2 ( 1 - A1 .. )

14 TW __ _ _ _ 6 w2 R+(624 2 3( 1 + MS/N )2 ( 1 - . W2R + . ) (A6.2)

I5, TW 1 2 2 3 42
5 (1 + MS/N) (- R + W -

(A6.3)

Substituting (A6.1) - (A6.3) into (65) - (71)

I.

d" ? ~ 4.. ~ X 1 . ~ .i ~o



3

2
TW M S/ 1/ S2 /'I 36AW-M2/

292 1 -(A6 .4)

1 + MS/N 125

TW MSi/N ( 1 + MS1IN W2 1/ M 2
J14= 2% (1+ M/N 3 1/ N 6 2

3AW 2  9 2 Si S-,/N 2

5 .1 + M/N
(A,6 .5)

TW MS-2/i ( 1 + MS-)/iN ) 2_ 1/2 1-1 6 12 5

i + m~ (1 S/:-1~ 3 2 65

3AW 2  M 2 SS/

5 1 + MS/N

2  9 2 2 1/2 3
S-1/4 w i MS1 /N

2.- ( 1 + MS/N )4 X~2 N 0

2M 2 S IS,/N 2  6AW 2

1 + 95/N 25

(Z"6 .7)

TW3 MIN;-- )I PW" MS2 /N (1 + MS2 /N +
J3 z 1 + MS/N )z 3- 1 + MS/N

(MS 2 /N) 2(,Aw 2 (1 +MS 2 /N) (1 + MS2 /N 2MS1 /N)

20 (1 + MS/N)z

TW (11N 2  r4 2M92 SS/N 2

J3 21 + MS/N )4  6 (1 + 1 + MS/N +

(AW 2)2  2 3(+ I21 2 2 SI 22

':20 5 1 + MS/N ) - 1 + MS/N (A6.9)

TW MI1N ) 2 L2 1MS1 /N + 

J4 2a 1 1+1M/N )z 1 + MS/N+

(MS 1 /N) 2 (pW 2) (1 + MSi/N)( 1 + 1Sj/N -2MS 2 /N ) ) (A6. 10)
20~ ~ (+ 15/N)I



'o-.u in d --. -r v w u~nnr. ,*.-

the de:eri.ant of i-

d a; t ( 2/, 1)+4 - W 2 61 A 22.4e*(J 3 ) - 2 ( 1 + XS/N; )4 MS/Nf ) - 61( '

N 3 +900

S2[ 2( 2+ 2
+ (f (MS/N) (I + MS/N) 22$/ ( - 2MS/N 3(MSl:)(20 ( + MS/N)

(A6.11)
Calculation of Xi:

_._I 4_ 4 - 2J!3J! 4J3,d + JI4 J3
,h ~~de X! = a-(J3)

4-22 -1

We consider the case .., w. ch I:s'/jN << (A,,; 1,2.
After a few steps of algebra, one car. show that

-.. 2 ) T 1 [ 2 i 2SS/N2 [2 4

.. 3. J A - ( 1AMS/N)6 1 f - 1W

2M 2 S S/,' 2 ) 1 12 2 AW2 ( MSi/N )( 1 + MSi/N )
1 + MS/ -25 +  3 1 + MS/N

: "2J!J1J34= .S1 2 1S/ )o
_]I 2W4  I + 4MSS2N 2 2 2[ 2 2 2

TXi __H_ 1+ O2 41 SS/N 1S 2 /N ( 1 2 OW2
5, 10','-.PT I +w ( MS/N 25

3 4 2 2 4

2 - i1N 1 + MS/ /N 2 1

J14 J33/f TWI
2l it 9 I 0~ + MS/N

3 2.

22 22
12 A2 + PW2 MS2 1/N ( 1 + VM52/N ) 6AW M S "T/

253 1+ mS /N"I 5 1 +MS/N J

After considerable algebra one can show that

'/................................. ....... . - -.----- -<<_.-..,v..'.......
". °.. •-..-' .-.' .............................................................""........'..".".."....".."... " .""<"'"-"'" ?" ." ,



4a.

3 4 2

J13 J 4 4 - 2J 1 33 1 4 J 3 4 + J14 - -] ( M/N ) X -

MS/N )2 -12 OW2 + 3W 2  ( MS2/N ) (MS2 /N - 2MSi/N)255 (1 + MS/N)MS / __ _ _ _ _ _"__ _ _ _ _ _

so that

1 TW ( MSI/N )2 12 W2  12 Aw 2 + 61 W2

21 ( 1 + MS/N ) 5 1 2 300 ( 1 MS/N)

+- 3 W2  ( MS/N ) (MS /N - 2MS1I / 35W 2 (MS/N) 1
5 ( 1 + MS/N ) 20 1 + MSIN

2 2 2;
3 W" S' S2 /'N2
1 0 (1 + M S l/ ) (A .12k

:-"-" (A6 .1

Entirely analogous cc.putations can be carried cut to determine X1 2
. and X 2 2. The results are given by :

. . ,th-is

X12 M- xl(2 m 2 S/N 2 2 12 2 11

2  1 + MS/N 3 1 25 300( 1 + MS/N )

3AW 2  (MS/N) 2 2M2 S S  -1)
e20 1 + MS/N (1 + MS/N)2

+ 3AW 2  (MS2 /N) 2 + (MS,/N)2

10 1 + MS/N

2 2 2TW 2 (Ms/N) w 1f2PW 61lpW

3pW2 ( MSI/U 2 2 (MS/N) 2

5 (1 + MS/N )z 20 1 + MS/N

+ 2M2 SS 2 /N
2 (3MS/N -1) } 3

( +... -Z (A6.13)



i'4. .J

i

Derivation of equa:ions (94), (95) , (97) , (93)

T- "ahis ftore .of th- matt-.c X 4-s zc-:d - =t for the
-'S case

2 -1 2 -1 2
MS 1 /N << (AW) and MS2 /N >> (pW) so that RpW << 1.

:Aczcr.in to the above, MS2/% >> 1 and S2 >> S1 . Based or. the res-
ults of Appendix 5, the following expressions are a;proximations for
elements of the J2 and J3 matrices under the specified conditions.

2 3/2
TW W m 3_ Si 10 2 -

3 - l MSi/N ( 1 - 2 - + - (MS 2 ,'w) " +
3N - 10 S 2  3

Si,' 4 ,,-1
+ - 2  )

T W 14Si/N- ( I + M+S /'1) 1/2 W 2 6 2 3.... .. ~ ms /-SIl'i PI~yT

(MS 2 /N)' X - C I_ - --

3 TW M W 1/2 6 2 3 MS /NAW2

- TWM S- W2  i/2 3 2 6 2,J24 " - Is. N S2 
x  - "  (! - - - 2 )

s- - 3 fl 251~ s/N~

MW V2 (AW ) ( 20 , -1
J33 + 20 (1 - ( MS2 /N AW )

TW M2  -2
J34 - -(MS2/) J44

It follows from the above that detJ 3  J3 3J44 , with J33 >J 344
when,

2> (W2-1 2)-1
.S2/[ (20)../ 2  - 4.5

2
We assume that the above statement holds, that MS2 /N;J may be arbit-
rarily large. From section 3

2 2
J13 J44 - 2J13J14J34 + J14 J33Xii

detJ 3

-Me 
e



Based C.- the aar~I4 r CCze n S, Cne O-Z a 4 S the Sin7pl14e - expression

33 733 4

.. nsert.n; the ab'o-v;e approximations yj-e'-d th-e f Ollowing result.

2 2
TW 2 3 W W Y2 S + 10( S/ A2)-1 4 -M_),(MS /,) - ('- - 4 + -(: 2/ -- (V .1)

4-4-

-~~ ~ !33J24J,713L12

.K del:J3

IJ__- 2 + 4J) -)!2 3 IA!'-

J33 33 J344

2 -1 2 -3For S5/ A> S~ /, an 4S.N (W) teebcm

2, (M 1 N 2 2 2 3
J- M 2N X1 4 ( + -J'/ i

XW MS1 / 629

TW 2 2 1 2 2A2 6 2
--, 52  - (S2 / X2 3b- (.f 15 +.S /N OMs/N +

egectngtin o, eqaioes (ower of40 give~ and elmnts ofe obin

2 212 -

TW(S N 2 2 (M 2N 3 2s 3p 2w

~2.r M MS

0e2
J12 **'s X*. .6 A. 2- S1 1

low TV-* VMdId/J 3~ 25 10-t3-&~*.I<.>;;:.



TW W S 6 c 1 3

TW x-2  MS z/ ( - + +. - MS I

J- X , - 2 3 3 -

- At low signal to noise ratios for source . i.e., MS 1 /N < < 1 the
variance of bearing errors are given by

f TW 2 1 2  2  2 -(A7)
Q - ,

Var(a 2 ) T X2 7-5 W2 g MS2/N (A7.2)

At large signal to noise ratios where MSI/N >> 1

Var(;) a TW 2 W2 2W(MS/N) 2 S1 (A7.3)-,S
2

,-.Va (& )  fTWPW 2 2 2 -
Var(- x2  ( M2SS 2 /2) 1 (A7. 4)

Equations (A7.1) - (A7.4) are equations (94), (95), (97), (98)

0-
--- A -- . - .". . . .- . . . . -a-..L. . . . . . . . . .

[-. . . . .~* ~ - - - -
. - .- * -



----- WO-.I v MW-.u F- U Cv 
--v

4 ~ ~ ~ x 3

te= nso e:s -:itw4n bze leesr z zan~argeW-R
ap~cx~at~ns:cr the integrals.

A M.ethod fcIr obta-:n-4rg upper and !-war bcunAs c.n incegrals :13 t!j ao h large W2I? mode was given i2 ppedi 4. Orhea et 1- 0invcvlles bounding the trunc atead irf n : a s arie s f or which leads toa bo on:!d " the imtagr7 - :1 . The approach 4s taen here teval,-ata integra7s 14 an ret
After s I m P I ccznputaz:: cns, one can, shoCw that the integralsmust lie between the values

-W-

MW 1 /

Thu-ppez and~ lower h-'- are app:!r.x-:narely- equa- beca-use we a sSuneon the basis of phy-,si-cal argumemts th-at

2:i
* AW <<(W

Appendix 4 Contains details of the argument.
Cn the basis of these approximations and the expression for Ijalso from Appendix' 4 one obtains the following3

1 TW - 1 X-23yr ____

13 TW 1 -2 3 3yz

TW -1/2 m _ 3J 3 -*MS 'N 2 MS7 N .4 S!

TW -1/2 _ 1J4 27 1 N {2 S2 MS/N J

=-TW -1/2 f xS- 1J2 N 2 2 ~ MS



_ TW 4- /2 M 3 3

TW (M/N) y,

- 2 r (, S , /N )' 1 4 (M S /N )- M - 2 "')

q 2
TW (M/N) y

..- 2 (M/N) _ _-_
T 1- v ..MNSI/ 4MS 2 /1N + 3 MSI/1 )444 2z (M S2-/NI) 4. MSN

sBy s-- of the above apr: tnati 40s for the elements of 73

:et (J3 = J13j. + O(y 2 )

* sc that 2

X- - J 2 j1 J '- J 4

S C334 4  a 4 4

t -- + -i - ( 3 + )A3.!)

x-*= -j 4'34J23 - 4 J- 4 3 + -Z 2 -
J 3 3 J 4 4  J 3 3 J) 4 J44

= I-- - xx 2  x yiC 1 + -$--) (AS.2)L -TI

" X22 = 2- * ]x[ y] ( (AS. 3)

* Equations (A3.1) - (AS.3) are equations (91) - (93).

,I

t
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Deri'ati n cf equa,:ins (1 ) an d 103)

TW

Sdet (Ki) - In de(K 0 ) det(sF 1 -, (l-s)K 0

k =2

r Cznsider det(.73). K0 has the forn of the identit, matrix plus an
cuter product :- ri:. The ma "r

Nki + S7070
"-os (M'-l) cieinv-au"s of N,. and one rena4nng e-.'aue of N' + ,

where N is the single nsnzero eigen'val-ue of Sv 0 0  This nonzero
- ei;ena!,e isequal to S', iv- = XS Therefcre, the d terminant of

Ko is

de:() = Nk ( . + MSk/:;k)

hK has the form of t*e identty matr i:, plus two outer product
ma:ries:

KI = t;k: + S!Vi~: + S 2 vv"

The matrix K! has (M-2) eigenvaiues of Nk and two others which are of
the form ( the k dependence of Nk is hereafter suppressed)

N + X1  , N + \ 2

- where ki and X2 are the two nonzero eigenvalues of the matrix SI 1 jZ
+ S-vv Ai and h2 can be computed from the following eigenvalue

-. euation. Eigenvectors associated with nonzero eigenvalues of the
matrix S:LYji_* + S 2 v 2 _2' have the form

avI + av 2

so that

(Slv, V I + ) (ay1 + by) = N(av + by-)

where the above soluticns for N are Al and X,. Using the above
eigenvalue equation one can solve for the roots

MS 1 - N S 1 (VLv- 2 )
det = 0

S2 (v2'v I )  MS 2 -

| I. .. = ,, .' ' .. . .. ..



! 2

2jh~: 2.
3 - z. one 0-t22

*1 N - X MS + M SIS2 !2 =0

The fo!owing properties of the solutions to quadratic equations
yield

2
X. N1= MS, Ihn2 = M SIS 2 t12

M-2 M-2 2
so that det(K0 ) = N (N + hl) (N + N2 ) = N (I + MS + M SIS 2 k12)

M 2 2
N.. , nk = 1 + MS/N 1! SiS 2/ N

One can use an identical approach to co-pu;e the determinant of the

SK-"+ (-s)F - - s P0 vav0  - (I - S)Gk(?1vi__ +

P2____2 - P?1? 1-1-1 v'v- + v2v2 X1Z1)

s/11
where Po

1 + MS/N

The above matrix in brackets has the form I - A. The matrix A has
three nonzero eigenvalues which correspond to eigenvectors of the

* form-S

a_0 + byi +c -_.

The matrix I - A has (M-3) eigenvalues of 1 and three others of the

form

1 - kj ; i = 1,2,3

wnere the hi are the nonzero eigenvalues of A.
Rearranging the terms in A:

-A = PO 0 + GkP1Vi (V1  - P 2 (Vl*V2 )v2') + GkV2(V2 - Pl(V2*v')V!<)

and writing the matrix equation det(A-hI) = 0 one obtains the
following expression. For brevity of notation, define

P ij V -vj for i,j = 0,1,2.



de

=0.

Ate r considerable algebra one can shcw that the above
q"equaziozn results in the following cubic equation in 

3 x2 1 [ + 1 2N sm2 sM2 xHk( + '/SNl/:2T2 ) - S! /N-

(2+ S/) + (! -[ - s) (! + "5/};) 7 S 22 2 +
1S I' N1*s/N N.'S/I~1r, . " . H k  (I + ?S,/:, "

+ s.S/N ( -S/:9 + --S2/) { - -SS2/"-(2 12 + ±O! + tC2

S- 2 ) ) - s22
.- ~ C_~ N t12,., 'c' " + t--! +  102

k -MS ) Q V L

-a- - -.. n ncat~on is used in (A9.!)

1 2 1
Pi - i and X = ! - - Re (p0 Pi!2p2 0 )

M 2  M 3

Since only the sums and products of the hi enter into the determinant
,t 4s not necessary to solve for the individual eigenvalues. Write
the above equation as follows

3 2
+ - a0 h + a1 h + a 2  0.

1 + -X2 + 2\ 3  = al; X-1k2 3 = a 2

After a few steps of algebra one obtains

.e

A. . _' " • .- , .. .. .. ." ' - ' . .. '.. . .. .. m .. . . - .. " . ."-. --4 . '.....*. . .- *'-".*



.- ,- - :~? 0  =2 -! l i[ s 2 2  2

22

d" e s sF 1 + MS /11 + s %I S. S2/N; :
--- " ~~~( +esi "(-)o)=C MSIN) H,.

+ s(1-s) MS/N ( M'/. + MS 2 /N s2 ) ( s(-s)( 12_ t 0

+ 02 - 2 N

OI Co-ini -.g with the previous results for det(Ki) and det(K0 ), the
exzression fcr (s) becomes

'--S

ns !n i + - [ 1 s i! + s(-s) +

k =1

+ T 2 ) + s2(I-s) MS/N R (t2 + 102 + 0! - 2 X) (A9 2)

which is equation. (107)

Ncw consider eq--.:ior (A9.2) with the specialization o: v0

v= [ ie , e , , e

SI ! a+ S 2"2
= d sin( )/c

S

From the results of section 2

2

-o12 = 1 czs(,ki-j) (cosa_ - cosa2)/c)
= M-I

al a al a2
a w; a 2L

2 2

.. 5

a" = a 4 a a-- - A

* *1



For a-, - a < < 2=.

cosaj - cosa 2 " a sin(a),

in addition, WLsin(a)Aa/c << 2x, one obtains

M-1
2', _ 1 k2d2sin 2  2) 2

'.-l 2 = - (~fw d (a) Aa (i-j) -

i'j, M-1
= 2

2 2 2 2 2
L wk sin (a) Aa /6c

M-1
2

-. - -- cos(kd(cosao - cosal) (i-j)/c)
M-1

=2

Usin. the previous definitions, a0 = a + A and it therefore
SlS 2

follows tnat

Si-S2
cosao - cosa ! = Cos(a + A ) - cos(a + )

S

Sl_$ 2  S2 S2
-(i - )sina = 2A - sina = Aa -

S S S

After a few steps of algebra, it follows that

2 2 2 2 S2 2 2
O a Ok L sin ad ( - ) /6c

S

2 2 2 2 S1 2 2
Similarly t02 wk L sin a a (-&a /6c

S

2 2 2 2
Let A L sin a &a /6c Then

.0 .



b2

"A = w A S 2 IS A2 = A' S! /S (A9.)

-.na- y or x

e- PC( P :2,20 =

R 1e exp( -jw d i~cosa0 -Cosa,) + J(ccsa1 -Cosa,%) +IC
_ M-!

! 2

Ci jOSa - c1- a)-

-22

3 Cos= d Aa oS 0 S2+j -
I ~~ CSS

*, , - -

. . _ -2

Unde r C in whIch LW Aa sina /c << 21, one ca.- ex, and the
cosine .m..- in a power series resulting in

,,., M-!

22 2 2

(wk 1 d a sin a/ M3c2) (i(S2/S) + j -1(SJ/S)) 2 +

i, j,! -= -
= 2

Because the ijl sums are carried over the sy..metric interval, only
terms with even powers contribute the sums. Using the definition for
p it can be shown that

* 2 2
1 2 S1  S2Nj-? - w k ( + -- + - )(X9'.4)

2 S S

Returning to equation (A9.2), by inserting the results of (A9.3) and
(A9.4) one obtains the simplification

1 12 + t01 + 02 -2M = 0

S S 2

- Ol + - t2 Ow
S2  S1

4-44
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Appendix 10

Deriva:ion of the sclu:ic (s = 0

Fro: equaticn (107) s(s) is given by
TW

L l(S) In( 1 + - R

k

For large TW products, one can approxima:e the k-suns by integrals.

N 0
- o

2
T -1/2 /2 3-1/2 x d:

*0 0

TW r22 -1/2 -1 2 1/2
I- 1n(1 +RfW)2 1-C tan (A

S2 S -1/ 2 t/ -1/r 2 S/ I/-

( 1- = -'( s)I I-(

2 -1
F::r W << I , power ser4es e:*:.pans-c-ns of the In(*) and tan ()
yield the following pclynoni,-al in s

2 2 2 2 3 2 3
VT [ ~( ) -(1 - ( A ) (aW )

u~) ___+ S + S__ +

2 10 5 21 7 -

One can compute the -ot, s' , for any order of the a b (e
p oIy-.,om i4a. 'L owever, it can be shown by straighforward calculations
that the nth term in the s polyno:ia IS proporzional to

2 n+2

so that corrections to the location of the root by including higher
a.. heth
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on.y yies

sm = 1/2.

secz order appro:xiMatin Vields
MN

s- = 1/2 - (5/21 ) Aw
According to .the assumption that the sources are closely spaced,

RAW << i so that s M -/2

N

..

.1-.?

,, A
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',J. 5 7

2 " 3
H. ..... . + s- -*- -+ ( ,'

2f TLS 4 C

• (" "/ 2 TW 2and s:, ( .. -" 2---

The false al arm and miss probailities are eq-;al t t*e ea-i, cther
2- and to the probability of error

2 T

Pr(c)2 TW 912 } exp T- (I. W2)Pr( )2 0 eSfc ( 00

which is e-uation. (109)
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